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Why should I use containers?

● Greatly assists with the "works on my machine" 
problem, i.e. disparities between development 
and production

● Allows you to ship applications in a uniform 
fashion, hence the moniker of containers.

● Many applications already available through the 
Docker library, which obviates the need to do as 
much configuration.



  

When isn't Docker a good fit?

● You have very strict security policies or 
● You are attempting to distribute an operating 

system with default set of applications.  Use a 
virtual machine instead.

● Certain HPC workloads? Other projects 
underway such as Shifter which attempt to 
bridge some of these deficiencies.



  

"Is this like a virtual machine?"

● In short, not exactly.
● Containers usually abstract away applications and are still reliant on 

the underlying kernel of the OS*, whereas virtual machines have to 
take care of abstracting whole operating systems.

*if you're running on Windows/Mac running Docker containers for   
Linux, you're actually running a VM under the hood to provide the 
features of the Linux kernel.



  

Containers vs virtual machines

● Lightweight, depends on kernel
● Mainly used for single 

applications, although "lift and 
shift" of several applications is 
possible

● Faster to boot, doesn't need to 
allocate separate resources like 
RAM, HD space.  Can still 
enforce resource limits if desired.

● Less separation mechanisms 
between container host and 
container

● More heavyweight, abstracts 
an OS on top of an OS

● Used to abstract away entire 
operating system 
environments

● Slower to boot, needs to 
allocate system resources like 
RAM, HD space in advance

● Separation, security between 
host and guest OSes



  

A word on security

● A full discussion on containerization security is beyond the scope of 
this tutorial.  However, Docker has a number of security mechanisms 
offered.  These include chroot, cgroups, PID isolation, network/firewall 
rules, SELinux (disabled by default on most), and user namespace 
remapping.

● In particular, members of docker group should be considered 
essentially tantamount to root access. As an example`docker exec -it -
v / --rm busybox` will give a root shell with access to root dir.

● Avoid running containers as root – use USER Dockerfile instruction to 
switch users.   If you really must use root, you should look into user 
namespace remapping via .dockerremap file to remap root user to 
another UID/GID. See https://docs.docker.com/engine/security/userns-
remap/



  

Security, continued

● Standard procedures still apply – check that 
dependencies are up to date, CVEs, etc.

● Check the build script contents and dependencies.
●  Consider signing your own images and/or only 

using images signed by parties known to be trusted.
● You can also run Docker inside a VM so that in the 

event of a container escape, they only have access 
to the VM.



  

Upgrading Docker

● Always recommend using latest version of 
Docker from official Docker repos

● Can add `{ live-restore: true }` and `sudo 
systemctl daemon-reload` to prevent stop of 
containers upon docker daemon restart if 
container uptime is important. (Linux only)



  

Preliminaries

● Union filesystems/Copy on write (CoW)
● Image credit:   

https://i2.wp.com/www.docker.com/blog/wp-
content/uploads/Blog.-Are-containers-..VM-
Image-1-1024x435.png?ssl=1



  

Volumes and data persisitence

● Remember when we discussed copy on write filesystems?
● By default, changes are applied to the containers' 

filesystem, unless a volume is specified.
● Continually writing to CoW layers is usually slower in 

terms of I/O performance
● Any aforementioned changes will be blown away if you 

destroy a container.
● Can sometimes check for container writes with `docker 

history`



  

Volumes and data persisitence

● To avoid these problems, Docker uses a 
persistence mechanism called volumes

● Essentially just writes to the file system and 
persists between writes.

● Three types of volumes – anonymous, host, 
and named. 



  

Anonymous, named

● Anoynmous and named volumes both have 
Docker abstract away volume creation

● Can refer to named volumes more easily, also 
share with other containers via the reference.



  

Caveat emptor, bind mounts 

● Bind mounts can be useful for dev, but be 
careful of permissions

● No guarantee on user creation having same 
UID/GID unless explicitly stated

● Can lack sufficient permission inside container 
or outside to read/write/execute files.



  

docker pull

● Pulls down an image from a remote location
● By default this will come from DockerHub 

unless you are logged into another image 
repository with `docker login`, such as Amazon 
ECR



  

docker build

● Builds an image from a Dockerfile
● Usually want `docker build -t 

<repo_name>/<image_name>:<version> 
<build_directory>`

● Version defaults to latest if not specified
● --cache-from , --no-cache to control build cache 

or ignore it entirely.



  

docker run

● Actually runs a container.
● Docker run [flags] <optional_cmd>
● LOTS of relevant flags.  Can specify resource 

limits (mem, CPU, IO), volumes, networks, DNS, 
restart policy, whether to run as interactive, 
whether to remove container on closing.

● Try to summarize some of the more important 
ones



  

docker run (contd.)

● --rm : removes the container when exiting
● -it : interactive and allocate pseudo-TTY. Go-to for 

when you need to run things in the container
● -v [[HOST-DIR:]CONTAINER-DIR[:OPTIONS]]]: specify 

volumes
● --restart-policy: specify a restart policy upon container 

failure
● --name : assign a name to the container
● -m : set memory limits



  

docker exec
● Run a command in a container
● Useful invocation: `docker exec -it 

<container_name> <some_shell>`  – create a 
shell in the container.

● -u/--user if you need to run something as 
another user (e.g. install something with the 
package manager)



  

Anatomy of a Dockerfile

● Virtually all contain FROM, RUN and CMD
● Each successfully run instruction creates a new 

layer in the container
● You can actually create a container from an 

underlying image step 



  

The FROM Dockerfile instruction

● The FROM Dockerfile instruction indicates an 
image which we wish to use as a base.

● For example, we might use `FROM centos:8` to 
import CentOS 8 from the official Docker library 
files.

● You virtually always want to use FROM, unless 
you are building a base OS image.



  

Interlude: Choosing a base image

● If there's an image in the official Docker libraries 
that have what you need, just use it, e.g. Python, 
WordPress

● If it's non-official, check the build scripts to make 
sure they're sane – I've seen some crazy stuff

● Minimal images are lightweight, but can take a 
long time to build numerical libraries due to 
different toolchains (show up in lack of Python 
wheels)



  

LABEL

● Adds key value pair information to the image 
which can later be inspected, e.g. author, 
organization.

● LABEL <name>="<value>"



  

EXPOSE
● The expose instruction allows a TCP port to be 

exposed outside the container.  This may be the 
outside world, or just the internal network 
shared by containers.

● Can either use `docker run -p 
<local_port>:<exposed_port> or `docker run -P` 



  

RUN instructructions

Runs a given command under the current 
SHELL (default is bash under Linux) and 
creates a new layer under the Dockerfile



  

VOLUME

● Declares that a given location within the 
container will use a volume.  By default this will 
use an anonymous volume if the volume is not 
declared with `-v` or similar mechanisms.



  

ADD/COPY

● Move a file from build context into 
● Usually want COPY
● ADD can also extract compressed files and fetch remote files.  

Usually still want `RUN … curl/wget remote_file_loc && 
some_other_operations` for remote files

● COPY and ADD can also set file access permissions via --
chmod flag (Linux containers only)

● COPY has a --from instruction which can copy files from another 
image.  This is known as a multi-stage build.  It can be useful for 
dependencies which require compilation of many libraries, but 
for which you don't wish to include the source dependencies.



  

ENV

● Set default environment variables
● Can be overridden
● Overriding variables declared with ENV won't 

break build cache on subsequent image builds.



  

WORKDIR

● Changes the current working directory to the 
directory supplied for any subsequent 
Dockerfile instructions

● NB: instructions like `RUN cd <some_dir>` 
won't work like you might expect; will change 
the directory for that invocation only and then 
return to the previous dir when the next 
instruction is run.



  

ARG

● Adds build time args
● These will invalidate the build cache at the 

instruction they are used.
● Can be useful for specifying certain build time 

args, i.e. compile-time flags, version of an 
application to build.

● Don't use for storing secrets – can be viewed 
with `docker history` and similar.



  

ENTRYPOINT/CMD

● Need at least one to run – if only one specified, use this 
as the command to run when starting the container and 
not overridden.

● If both CMD and ENTRYPOINT are specified, 
ENTRYPOINT

● Use ENTRYPOINT command form, generally speaking 
["some_command", "arg1", "arg2"].  CMD will get passed 
to this command.

● ENTRYPOINT often does some runtime setup, and then 
replaces the process specified in CMD using **exec**



  

Multi stage builds

● Allow you to use COPY from another image's 
layers

● Useful for keeping image size down
● Example use case: compile source with 

numerical optimizing container, COPY from 
original build and only actually push 
binaries/libs, not source and compilers



  

Monitoring containers in production

● Containers produce detailed stats – can see 
with `docker stats`.

● Can monitor metrics with InfluxDB/Telegraf, or 
Prometheus

● Visualize stats 
● Roll out Telegraf on container hosts using tools 

such as Ansible
● Use Prometheus use using K8S?



  

IOOS Catalog

● First used in circa 2016, migrating from service 
monitor

● Originally used phusion-baseimage for PID 1 
issue, kind of bloated

● Moved everything over to CKAN 2.8



  

IOOS Catalog architecture



  

Actual use case

● CKAN was using a very large amount of system 
I/O on IOOS Catalog Host.

● Wasn't immediately clear what was slowing 
down.



  

Fixing problems

● Enable restart policies (on-failure, always, unless-stopped)
● If you have an issue with a file, look at the traceback
● You can run `docker cp` even against a stopped or exited 

containers to apply hotfix then restart.
● `docker commit` can be useful to create hotfixes.
● `docker update` useful for changing settings on the fly 

(mem limits, reset policy, etc)
● Can also run container from previous build step in 

Dockerfile



  

Stability and running with multiple 
services

● Standalone applications can be useful, but many 
also need to communicate with other services, 
such as databases.

● Use docker-compose for simple use cases, 
consider moving to K8S if more advanced uses 
are needed

● Combine HEALTHCHECK with entrypoint scripts 
which spinlock/wait for required resources (e.g. 
wait-for-it.sh, pg_isready, etc.)



  

Introducing docker-compose

Docker-compose is an application which reads 
YAML files which specify container 
configuration.

● The majority of the arguments are analogous to 
their docker run counterparts.

● Example IOOS Catalog



  

Questions?
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