
  

Containerization/DMAC software
Ben Adams
RPS ASA



  

Why should I use containers?

● Greatly assists with the "works on my machine" 
problem, i.e. disparities between development 
and production

● Allows you to ship applications in a uniform 
fashion, hence the moniker of containers.

● Many applications already available through the 
Docker library, which obviates the need to do as 
much configuration.



  

When isn't Docker a good fit?

● You have very strict security policies or 
● You are attempting to distribute an operating 

system with default set of applications.  Use a 
virtual machine instead.

● Certain HPC workloads? Other projects 
underway such as Shifter which attempt to 
bridge some of these deficiencies.



  

"Is this like a virtual machine?"

● In short, not exactly.
● Containers usually abstract away applications and are still reliant on 

the underlying kernel of the OS*, whereas virtual machines have to 
take care of abstracting whole operating systems.

*if you're running on Windows/Mac running Docker containers for   
Linux, you're actually running a VM under the hood to provide the 
features of the Linux kernel.



  

Containers vs virtual machines

● Lightweight, depends on kernel
● Mainly used for single 

applications, although "lift and 
shift" of several applications is 
possible

● Faster to boot, doesn't need to 
allocate separate resources like 
RAM, HD space.  Can still 
enforce resource limits if desired.

● Less separation mechanisms 
between container host and 
container

● More heavyweight, abstracts 
an OS on top of an OS

● Used to abstract away entire 
operating system 
environments

● Slower to boot, needs to 
allocate system resources like 
RAM, HD space in advance

● Separation, security between 
host and guest OSes



  

A word on security

● A full discussion on containerization security is beyond the scope of 
this tutorial.  However, Docker has a number of security mechanisms 
offered.  These include chroot, cgroups, PID isolation, network/firewall 
rules, SELinux (disabled by default on most), and user namespace 
remapping.

● In particular, members of docker group should be considered 
essentially tantamount to root access. As an example`docker exec -it -
v / --rm busybox` will give a root shell with access to root dir.

● Avoid running containers as root – use USER Dockerfile instruction to 
switch users.   If you really must use root, you should look into user 
namespace remapping via .dockerremap file to remap root user to 
another UID/GID. See https://docs.docker.com/engine/security/userns-
remap/



  

Security, continued

● Standard procedures still apply – check that 
dependencies are up to date, CVEs, etc.

● Check the build script contents and dependencies.
●  Consider signing your own images and/or only 

using images signed by parties known to be trusted.
● You can also run Docker inside a VM so that in the 

event of a container escape, they only have access 
to the VM.



  

Upgrading Docker

● Always recommend using latest version of 
Docker from official Docker repos

● Can add `{ live-restore: true }` and `sudo 
systemctl daemon-reload` to prevent stop of 
containers upon docker daemon restart if 
container uptime is important. (Linux only)



  

Preliminaries

● Union filesystems/Copy on write (CoW)
● Image credit:   

https://i2.wp.com/www.docker.com/blog/wp-
content/uploads/Blog.-Are-containers-..VM-
Image-1-1024x435.png?ssl=1



  

Volumes and data persisitence

● Remember when we discussed copy on write filesystems?
● By default, changes are applied to the containers' 

filesystem, unless a volume is specified.
● Continually writing to CoW layers is usually slower in 

terms of I/O performance
● Any aforementioned changes will be blown away if you 

destroy a container.
● Can sometimes check for container writes with `docker 

history`



  

Volumes and data persisitence

● To avoid these problems, Docker uses a 
persistence mechanism called volumes

● Essentially just writes to the file system and 
persists between writes.

● Three types of volumes – anonymous, host, 
and named. 



  

Anonymous, named

● Anoynmous and named volumes both have 
Docker abstract away volume creation

● Can refer to named volumes more easily, also 
share with other containers via the reference.



  

Caveat emptor, bind mounts 

● Bind mounts can be useful for dev, but be 
careful of permissions

● No guarantee on user creation having same 
UID/GID unless explicitly stated

● Can lack sufficient permission inside container 
or outside to read/write/execute files.



  

docker pull

● Pulls down an image from a remote location
● By default this will come from DockerHub 

unless you are logged into another image 
repository with `docker login`, such as Amazon 
ECR



  

docker build

● Builds an image from a Dockerfile
● Usually want `docker build -t 

<repo_name>/<image_name>:<version> 
<build_directory>`

● Version defaults to latest if not specified
● --cache-from , --no-cache to control build cache 

or ignore it entirely.



  

docker run

● Actually runs a container.
● Docker run [flags] <optional_cmd>
● LOTS of relevant flags.  Can specify resource 

limits (mem, CPU, IO), volumes, networks, DNS, 
restart policy, whether to run as interactive, 
whether to remove container on closing.

● Try to summarize some of the more important 
ones



  

docker run (contd.)

● --rm : removes the container when exiting
● -it : interactive and allocate pseudo-TTY. Go-to for 

when you need to run things in the container
● -v [[HOST-DIR:]CONTAINER-DIR[:OPTIONS]]]: specify 

volumes
● --restart-policy: specify a restart policy upon container 

failure
● --name : assign a name to the container
● -m : set memory limits



  

docker exec
● Run a command in a container
● Useful invocation: `docker exec -it 

<container_name> <some_shell>`  – create a 
shell in the container.

● -u/--user if you need to run something as 
another user (e.g. install something with the 
package manager)



  

Anatomy of a Dockerfile

● Virtually all contain FROM, RUN and CMD
● Each successfully run instruction creates a new 

layer in the container
● You can actually create a container from an 

underlying image step 



  

The FROM Dockerfile instruction

● The FROM Dockerfile instruction indicates an 
image which we wish to use as a base.

● For example, we might use `FROM centos:8` to 
import CentOS 8 from the official Docker library 
files.

● You virtually always want to use FROM, unless 
you are building a base OS image.



  

Interlude: Choosing a base image

● If there's an image in the official Docker libraries 
that have what you need, just use it, e.g. Python, 
WordPress

● If it's non-official, check the build scripts to make 
sure they're sane – I've seen some crazy stuff

● Minimal images are lightweight, but can take a 
long time to build numerical libraries due to 
different toolchains (show up in lack of Python 
wheels)



  

LABEL

● Adds key value pair information to the image 
which can later be inspected, e.g. author, 
organization.

● LABEL <name>="<value>"



  

EXPOSE
● The expose instruction allows a TCP port to be 

exposed outside the container.  This may be the 
outside world, or just the internal network 
shared by containers.

● Can either use `docker run -p 
<local_port>:<exposed_port> or `docker run -P` 



  

RUN instructructions

Runs a given command under the current 
SHELL (default is bash under Linux) and 
creates a new layer under the Dockerfile



  

VOLUME

● Declares that a given location within the 
container will use a volume.  By default this will 
use an anonymous volume if the volume is not 
declared with `-v` or similar mechanisms.



  

ADD/COPY

● Move a file from build context into 
● Usually want COPY
● ADD can also extract compressed files and fetch remote files.  

Usually still want `RUN … curl/wget remote_file_loc && 
some_other_operations` for remote files

● COPY and ADD can also set file access permissions via --
chmod flag (Linux containers only)

● COPY has a --from instruction which can copy files from another 
image.  This is known as a multi-stage build.  It can be useful for 
dependencies which require compilation of many libraries, but 
for which you don't wish to include the source dependencies.



  

ENV

● Set default environment variables
● Can be overridden
● Overriding variables declared with ENV won't 

break build cache on subsequent image builds.



  

WORKDIR

● Changes the current working directory to the 
directory supplied for any subsequent 
Dockerfile instructions

● NB: instructions like `RUN cd <some_dir>` 
won't work like you might expect; will change 
the directory for that invocation only and then 
return to the previous dir when the next 
instruction is run.



  

ARG

● Adds build time args
● These will invalidate the build cache at the 

instruction they are used.
● Can be useful for specifying certain build time 

args, i.e. compile-time flags, version of an 
application to build.

● Don't use for storing secrets – can be viewed 
with `docker history` and similar.



  

ENTRYPOINT/CMD

● Need at least one to run – if only one specified, use this 
as the command to run when starting the container and 
not overridden.

● If both CMD and ENTRYPOINT are specified, 
ENTRYPOINT

● Use ENTRYPOINT command form, generally speaking 
["some_command", "arg1", "arg2"].  CMD will get passed 
to this command.

● ENTRYPOINT often does some runtime setup, and then 
replaces the process specified in CMD using **exec**



  

Multi stage builds

● Allow you to use COPY from another image's 
layers

● Useful for keeping image size down
● Example use case: compile source with 

numerical optimizing container, COPY from 
original build and only actually push 
binaries/libs, not source and compilers



  

Monitoring containers in production

● Containers produce detailed stats – can see 
with `docker stats`.

● Can monitor metrics with InfluxDB/Telegraf, or 
Prometheus

● Visualize stats 
● Roll out Telegraf on container hosts using tools 

such as Ansible
● Use Prometheus use using K8S?



  

IOOS Catalog

● First used in circa 2016, migrating from service 
monitor

● Originally used phusion-baseimage for PID 1 
issue, kind of bloated

● Moved everything over to CKAN 2.8



  

IOOS Catalog architecture



  

Actual use case

● CKAN was using a very large amount of system 
I/O on IOOS Catalog Host.

● Wasn't immediately clear what was slowing 
down.



  

Fixing problems

● Enable restart policies (on-failure, always, unless-stopped)
● If you have an issue with a file, look at the traceback
● You can run `docker cp` even against a stopped or exited 

containers to apply hotfix then restart.
● `docker commit` can be useful to create hotfixes.
● `docker update` useful for changing settings on the fly 

(mem limits, reset policy, etc)
● Can also run container from previous build step in 

Dockerfile



  

Stability and running with multiple 
services

● Standalone applications can be useful, but many 
also need to communicate with other services, 
such as databases.

● Use docker-compose for simple use cases, 
consider moving to K8S if more advanced uses 
are needed

● Combine HEALTHCHECK with entrypoint scripts 
which spinlock/wait for required resources (e.g. 
wait-for-it.sh, pg_isready, etc.)



  

Introducing docker-compose

Docker-compose is an application which reads 
YAML files which specify container 
configuration.

● The majority of the arguments are analogous to 
their docker run counterparts.

● Example IOOS Catalog



  

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

